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Abstract: The importance of the immune system for cardiac repair following myocardial infarction is
undeniable; however, the complex nature of immune cell behavior has limited the ability to develop
effective therapeutics. This limitation highlights the need for a better understanding of the function
of each immune cell population during the inflammatory and resolution phases of cardiac repair.
The development of reliable therapies is further complicated by aging, which is associated with
a decline in cell and organ function and the onset of cardiovascular and immunological diseases.
Aging of the immune system has important consequences on heart function as both chronic cardiac
inflammation and an impaired immune response to cardiac injury are observed in older individuals.
Several studies have suggested that rejuvenating the aged immune system may be a valid therapeutic
candidate to prevent or treat heart disease. Here, we review the basic patterns of immune cell
behavior after myocardial infarction and discuss the autonomous and nonautonomous manners of
hematopoietic stem cell and immune cell aging. Lastly, we identify prospective therapies that may
rejuvenate the aged immune system to improve heart function such as anti-inflammatory and senolytic
therapies, bone marrow transplant, niche remodeling and regulation of immune cell differentiation.
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1. Introduction

After myocardial infarction (MI), cardiomyocyte death activates cellular and structural remodeling
of the heart: Remaining cardiomyocytes take on an additional contractile load, leading to cardiomyocyte
hypertrophy, while fibroblasts proliferate, produce extracellular matrices, to help replace lost
cardiomyocytes with collagenous scar. The extent of the infarct necrosis is influenced by the collateral
circulation which may preserve injured but viable myocardium. Perhaps the most diverse and
complex reaction, however, is the immune response which has been shown to influence multiple repair
processes. There is increasing interest in developing pharmacological and cell-based therapies that
target the immune response to improve cardiac repair following ischemic injury. Anti-inflammatory
medications, such as glucocorticoids or non-steroidal anti-inflammatory drugs (NSAIDs) which
broadly target inflammation, revealed that these drugs contribute to adverse cardiac outcomes,
demonstrating the complex nature of the immune system and the recovery of cardiac function [1–3].
More precise control over different populations of immune cells is required to achieve a safe and
effective treatment. Another facet to the complexity of putative therapies is aging which, at the cellular
level, is inherently associated with reduced cellular functionality and at the tissue level, is associated
with both immunological and cardiovascular diseases. This review examines the effect of aging

Cells 2020, 9, 1894; doi:10.3390/cells9081894 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-5780-6238
http://www.mdpi.com/2073-4409/9/8/1894?type=check_update&version=1
http://dx.doi.org/10.3390/cells9081894
http://www.mdpi.com/journal/cells


Cells 2020, 9, 1894 2 of 32

on the immune system and evaluates regenerative immunotherapies that may be tailored to treat
cardiovascular pathologies after ischemic injury.

2. Typical Immune Responses after Myocardial Infarction

Immune cells are divided into lymphoid and myeloid cell types based on two common progenitor
cells. Lymphoid cells include natural killer (NK) cells, T cells and B cells while myeloid cells
include basophils, neutrophils, eosinophils and monocytes (the precursor to dendritic cells and
bone-marrow-derived macrophages), mast cells and megakaryocytes, which produce anuclear platelets
via thrombopoiesis. All immune cells, except for T and B cells, are part of the innate immune response
which is designed to (1) recognize damage or pathogen-associated molecular patterns (DAMPs or
PAMPs, respectively), (2) amplify the innate immune response, (3) clear pathogens and debris via
phagocytosis and (4) activate the adaptive immune response (T and B cells) [4]. Phagocytic cells are a
diverse population which clear debris and modulate the microenvironment via cytokine and growth
factor release. Phagocytic cells include neutrophils, dendritic cells and macrophages, the latter of which
have become an active area of research in cardiac disease because of their diverse role in tissue repair.

The dynamic role of the immune system in cardiac homeostasis and disease has been reviewed
extensively [5,6]. Briefly, in the healthy adult heart, resident immune cells include B and T cells,
mast cells and macrophages. Using single cell suspensions and flow cytometry, Pinto et al. determined
that 9% of non-myocyte cells are leukocytes. This number further breaks down into 7% myeloid cells,
which were mostly macrophages, and roughly 1% lymphocytes [7]. Resident cardiac macrophages
have an important role in steady-state homeostasis but also regulate cardiomyocyte contraction via
electrical coupling [8].

2.1. Myeloid Cell Activity after Myocardial Infarction

The most common cause of acute myocardial ischemia is coronary artery obstruction by rupture of
an atherosclerotic plaque and thrombosis of the vessel [9]. When the plaque ruptures, platelets migrate
to the disrupted endothelium and adhere to constituents of the vessel wall to form a clot, occluding the
vessel, which consequently causes cardiac ischemia [10]. After acute myocardial injury, cardiac-resident,
splenic and bone-marrow-derived immune cells participate in two cellular phases, inflammation and
resolution, both of which are critical for effective repair. In experimental rodent models of permanent
coronary artery occlusion, the cumulative inflammatory phase of all leukocytes typically peaks at 3 days
post-infarction which may correspond to 1 to 2 weeks in humans [11]. Unfortunately, less is known
about the temporal immune response in humans after myocardial infarction. Within this timeframe
are waves of immune cell infiltration, which vary by cell type and cytokine and chemokine production.
Figure 1A depicts the general pattern of immune cell and cytokine density within the rodent heart
at 1, 3, 5 and 7 days after permanent occlusion. Within the first 24 h, and up to 3 days post-injury,
myeloid cells contribute to tissue inflammation while at approximately 5–7 days post-injury, myeloid
cell behavior takes on a reparative phenotype and lymphoid cell infiltration increases. Regulating
the early innate immune response is important as it can limit infarct size [12]. Rodent models that
use ischemia-reperfusion injury have a faster inflammatory response, particularly with respect to the
lymphoid population [13].



Cells 2020, 9, 1894 3 of 32
Cells 2020, 9, x 3 of 32 

 

 

 
Figure 1. Typical immune cell and tissue responses in the heart after permanent coronary artery 
occlusion. (A) The generalized pattern of immune cell infiltration to the heart after ischemic injury. 
Here, immune cell infiltrate is subdivided into myeloid and lymphoid populations. Myeloid cell 
infiltration spans approximately 1–3 days post-MI, while lymphoid cell populations infiltrate the 
heart at approximately 3–7 days post-MI. (B) Systemic tissue response to MI. After MI, signals from 
the heart (e.g., from degranulating mast cells, dying cardiomyocytes or activated fibroblasts) act on 
the spleen and bone marrow to initiate tissue repair. The activation of HSCs and migration of immune 
cells is triggered by a diverse array of molecules, including but not limited to CCL2, CXCL12 (SDF-
1), GM-CSF and IL-1β. Monocytopoiesis is regulated by IL-1β and CCL-2. Gradually, HSCs in the 
bone marrow will repopulate the spleen in part through chemotactic molecules such as KITL (SCF). 

After MI, the cardiac microenvironment consists of ischemic and dead cardiomyocytes which 
release DAMPs including cytokines and chemokines such as monocyte chemoattractant protein-1 
(MCP-1/CCL2), Interleukin (IL)-1α, IL-6, C-X-C Motif Chemokine Ligand 16 (CXCL16), the 
macrophage-inhibitory factor (MIF) and CXCL12, which recruit leukocytes to the heart [14]. These 
molecules act in an autocrine, paracrine and endocrine signaling cascades to amplify pro-
inflammatory signals and promote immune cell recruitment (Figure 1B). Resident fibroblasts also 
contribute to inflammation by releasing granulocyte/macrophage colony-stimulating factor (GM-

Figure 1. Typical immune cell and tissue responses in the heart after permanent coronary artery
occlusion. (A) The generalized pattern of immune cell infiltration to the heart after ischemic injury.
Here, immune cell infiltrate is subdivided into myeloid and lymphoid populations. Myeloid cell
infiltration spans approximately 1–3 days post-MI, while lymphoid cell populations infiltrate the heart
at approximately 3–7 days post-MI. (B) Systemic tissue response to MI. After MI, signals from the
heart (e.g., from degranulating mast cells, dying cardiomyocytes or activated fibroblasts) act on the
spleen and bone marrow to initiate tissue repair. The activation of HSCs and migration of immune
cells is triggered by a diverse array of molecules, including but not limited to CCL2, CXCL12 (SDF-1),
GM-CSF and IL-1β. Monocytopoiesis is regulated by IL-1β and CCL-2. Gradually, HSCs in the bone
marrow will repopulate the spleen in part through chemotactic molecules such as KITL (SCF).

After MI, the cardiac microenvironment consists of ischemic and dead cardiomyocytes
which release DAMPs including cytokines and chemokines such as monocyte chemoattractant
protein-1 (MCP-1/CCL2), Interleukin (IL)-1α, IL-6, C-X-C Motif Chemokine Ligand 16 (CXCL16),
the macrophage-inhibitory factor (MIF) and CXCL12, which recruit leukocytes to the heart [14].
These molecules act in an autocrine, paracrine and endocrine signaling cascades to amplify
pro-inflammatory signals and promote immune cell recruitment (Figure 1B). Resident fibroblasts also
contribute to inflammation by releasing granulocyte/macrophage colony-stimulating factor (GM-CSF),
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which stimulates local leukocyte activity and acts at a distance in the bone marrow, triggering
hematopoiesis [15]. Concomitant with the upregulation of HSC chemotactic factors in the infarcted
heart, stem cell retention factors such as CXCXL12, are downregulated in the bone marrow due to
activation of β3 adrenergic signaling [16]. CCL2 also stimulates proliferation of a subset of primitive
HSCs (CD150+ CD48− Lineage− Sca-1+ c-Kit+) which express C-C chemokine receptor 2 (CCR2),
thereby contributing to the potent immune reaction that develops post-MI [17]. The release of HSCs
from the bone marrow requires matrix metalloproteinase (MMP)-9 activity and if MMPs are inhibited,
HSC recruitment is impaired and cardiac function deteriorates [18]. HSC activation and recruitment is
an important determinant of cardiac functional recovery after MI as dysfunctional HSCs results in
severe, terminal heart failure [18,19].

Platelets are recruited to the ischemic myocardium during the early inflammatory phase in animal
models of both permanent coronary occlusion and ischemia-reperfusion (I/R), though permanent
occlusion leads to persistent platelet recruitment, spanning 6 to 72 h post-MI [20], while I/R leads
to transient platelet infiltration approximately 2 h post-injury [21]. Here, platelets release various
pro-inflammatory biomolecules and interact with other leukocytes [22].

Granulocytes also have an important role during the early inflammatory phase. This cell population
includes neutrophils, eosinophils, basophils and mast cells which carry a diverse assortment of bioactive
molecules such as histamines, proteases and cytokines. Mast cells migrate and mature in resident
tissues while all other granulocytes are recruited from the bone marrow in response to pro-inflammatory
stimulation. Basophils have a role in autoimmune reactions and can regulate fibrosis, T cell activity
and eosinophil recruitment [23–25] but have not been shown to have a substantial role in heart repair.
Eosinophils are an understudied immune cell population in the ischemic heart. It was recently shown
that eosinophil depletion worsened cardiac outcomes after permanent coronary artery occlusion,
indicating this immune cell population warrants further investigation [26].

Approximately 8–24 h post-MI (in mice), resident mast cells degranulate, releasing cytokines,
such as Tumor Necrosis Factor (TNF)-α, to amplify the inflammatory response, contribute to the
death of injured cardiomyocytes and also facilitate immune cell recruitment from the bone marrow
and spleen [27]. Mast cells also release proteases that degrade bio-protective molecules such as
Insulin-like growth factor (IGF)-1 [28,29]. While mast cells are generally associated with adverse
cardiac events, they also contribute to cardiac remodeling as they can promote either fibrosis or collagen
degradation via MMP activation, depending on the stimulus [30]. Neutrophils, which have dual
roles as phagocytes and granulocytes, are recruited within the first 24 h post-MI. Neutrophils amplify
tissue injury via monocyte recruitment and the production of cytokines such as IL-1β, TNF-α, CCL3,
and IL-12 [31,32] but later act as an anti-inflammatory switch in macrophages either by modulating the
local microenvironment, or by programming macrophage behavior from within after efferocytosis [33].
Conversely, Horckmans et al. suggested that abrogation of all neutrophils has been shown to be
detrimental and lead to adverse cardiac remodeling, including uncontrolled fibrosis and reduced
macrophage efferocytosis [34].

Monocyte infiltration occurs between 1 and 5 days post-MI and contributes to both inflammatory
and reparative phases. Splenic monocytes supply the initial infiltration of monocytes shortly after
MI [35,36] in an IL-1β dependent manner [37,38]. As circulating monocytes survive between 1
and 7 days [39], the body also stimulates monocyte differentiation and recruitment from the bone
marrow [36]. Progenitors from the bone marrow will later replenish the spleen in a c-Kit dependent
manner [16]. In addition to IL-1β, Ly6Chi monocytes are recruited to the heart via MCP-1/CCL2 which
acts on CCR2 [40–42]. The systemic interaction between heart, spleen and bone marrow during the
early phase of cardiac repair after MI is depicted in Figure 1B. Blocking monocyte recruitment to the
infarcted heart via CCR2 chemokine receptor antagonist limits inflammation, enhances angiogenesis
and maintains beneficial resident cardiac macrophages [43]. Ly6Clo monocytes do not express CCR2
but instead express CX3CR1, providing a useful method to sort these two monocyte populations [44].
The first monocyte population to appear is pro-inflammatory Ly6Chi monocytes which differentiate
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into CCR2+ macrophages. As healing proceeds, Ly6Chi monocytes gives rise to Ly6Clo monocytes
which differentiate into macrophages at a lower rate and function primarily as pro-reparative cells and
survey endothelial cell health for clearance [45–47]. The conversion and survival of Ly6Clo monocytes
is controlled by Nuclear receptor subfamily 4 group A member 1 (Nr4a1, aka Nur77) [48,49]. While for
some time, the ontogeny of bone marrow or splenic-derived cardiac macrophages from Ly6Chi/lo

monocytes was unclear, analysis using bone marrow transplant from Nr4a1 knockout mice (Nr4a1−/−),
which lack LyC6lo monocytes, to WT mice showed that both inflammatory and reparative macrophages
arise exclusively from Ly6Chi monocytes [49]. Bone marrow replacement with Nr4a1−/− HSCs resulted
in an amplified inflammatory response and fewer reparative macrophages after MI [49].

Macrophages are one of the better characterized immune cells in cardiac disease because of their
important functional role in tissue repair. During development, cardiac macrophages develop from
the yolk sac and are present in the heart as CCR2− macrophages which promote heart function via
cardiomyocyte proliferation and angiogenesis [49,50]. A number of CCR2− tissue-resident cardiac
macrophages die after MI, which are then replaced by CCR2+ macrophages derived from circulating
Ly6Chi monocytes [50]. Resident and bone-marrow-derived macrophages can be identified by using a
combination of CCR2, MHC-II, Ly6C, CX3CR1, TIMD4, LYVE1 but cell sorting depth and preference
varies across studies [43,51,52]. The recent identification of new populations of cardiac macrophages has
widened the breadth of macrophage function [43,51–53] but for some time, macrophages were grouped
into two functional roles after acute injury such as myocardial infarction: M1 (pro-inflammatory)
followed by M2 (anti-inflammatory) macrophages. Under this lens, M1 and M2 macrophages are
present in sequential functional waves. Initially, M1 macrophages contribute to further tissue damage
and cellular digestion to facilitate wound clearance via production of cytokines [54]. Approximately
5–7 days after permanent coronary artery occlusion or I/R, the resolution phase begins and the
macrophage population is predominantly M2 [13]. The M2 macrophage response is slightly more
complex than classically activated M1 macrophages as three subsets of M2 macrophages have been
characterized, depending on the in vitro differentiation conditions. Both M2a and M2c are associated
with tissue repair and extracellular matrix deposition, while M2b has an immunomodulatory role [55].
One of the better characterized M2a cytokines is IL-10, which acts on endothelial cells and fibroblasts
to promote angiogenesis and deposition of extracellular matrix [56], respectively, and also behaves as
an anti-inflammatory. M2 macrophages also secrete factors such as the Transforming Growth Factor
(TGF)-β superfamily (e.g., TGF-β1 and Growth differentiation factor (GDF)-15, Vascular endothelial
growth factor (VEGF), and Platelet-derived growth factor (PDGF). M2 macrophages also express
arginase (ARG) 1 and 2 which facilitate collagen production. Using the permanent occlusion model,
M1 TNF-α+ macrophages and M2 ARG1+ macrophages were quantified at 2-, 5- and 10- days post-MI.
TNF-α+ macrophages began to decline by day 5 while ARG1+ macrophages were still increasing at
day 10, corresponding to the functional change in macrophage behavior from pro-inflammatory to
reparative [54].

Inflammatory M1 and reparative M2 macrophages are a loose delineation of macrophages based
on function. Single cell RNA-seq has revealed that there are at least seven different cardiac macrophage
populations in the infarcted heart [41,42], a far cry from the M1 and M2 macrophage dichotomy.
Deletion of one macrophage subset, interferon inducible macrophages (IFNICs) was able to improve
heart function after MI, demonstrating the therapeutic potential that targeting select groups of cardiac
macrophages could have on heart disease [53], though timing will be critical. King et al. demonstrated
that limiting the activity of IFNICs via pharmacological inhibitors in mice benefits heart function if
administered during the early phase of MI, within the first 48 h [53].

2.2. Lymphoid Cell Activity after Myocardial Infarction

Lymphoid cells of the adaptive immune system include B (discovered in the bursa of Fabricius,
a lymphoid organ in birds) and T (Thymus) cells which arise from a common lymphoid progenitor
(CLP) but mature in the bone marrow or thymus, respectively. Natural killer (NK) cells, which are
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distinguished by the cell surface marker CD56, also arise from a CLP. NK cells participate in the innate
immune response and have a protective role in limiting inflammation in the setting of myocarditis [57].
Their role after myocardial infarction is more complex as they demonstrate pro- and anti-inflammatory
potential; however, their infiltration peaks approximately 5 days after permanent occlusion which may
indicate a more important role in the latter [13,58,59].

T cells recognize peptides presented by antigen presenting cells such as macrophages, dendritic
cells and B cells to mount an appropriate immune response by scaling the reaction up or down.
Depending on the antigen present, naïve T cells can be stimulated to form CD4+ T helper cells or
cytotoxic CD8+ T cells. CD4+ T helper cells further specialize as they differentiate into effector T cells
called Th1, Th2, Th17 and T regulatory (Treg) cells. Treg cells are often grouped as their own T cell
subtype because of their role in immuno-suppression [60]. Additional T cells include γδ T cells, Th9,
Th22, T follicular helper (Tfh) cells and T follicular regulatory (Tfr) cells but are omitted for the purpose
of this review.

The adaptive immune response in the ischemic heart runs the gamut of T cells, B cells and NK
cells of varying densities, and arrive approximately 3–7 days post-MI [13]. Their delayed recruitment
during the resolution phase correlates with their functional ability to modulate cardiac fibrosis, though
some studies demonstrate CD3+T cells peaking 1 day post-MI [59]. Thus, the timely recruitment of
lymphoid cell recruitment is not as well mapped out as myeloid cells (Figure 1A). From the CD4+ cell
cohort, Th1 and Treg cells are the most abundant [13]. After acute cardiac injury, Th1 cells migrate to the
heart and produce pro-inflammatory cytokines such as Interferon (IFN)-γ, while Th2 and Th17 T cell
infiltration is comparatively negligible [13,61]. Th1 recruitment coincides with the immuno-suppressive
Treg cell activity. The presence of both pro- and anti-inflammatory CD4+ cells may be related to
the MI model (permanent occlusion vs. I/R) which demonstrate conflicting roles of CD4+ cells on
heart repair. Using I/R, Yang et al. demonstrated that antibody depletion of CD4+ but not CD8+ T
cells reduced infarct size [62], indicating a harmful role for CD4+ cells in heart repair. In contrast,
permanent coronary artery occlusion of CD4+ knockout mice increased inflammation, mortality and
cardiac rupture, indicating an important role for these cells in wound healing [61]. Further studies with
more stringent cellular analyses will be necessary to delineate the different roles of the CD4+ T cells.
Treg cells have an important role in macrophage polarization as genetic deletion of Treg cells using
Foxp3 diphtheria toxin receptor (DTR) mice or anti-CD25 monoclonal antibody-mediated depletion
worsened cardiac repair and enhanced M1 macrophage polarization while Treg activation induced
M2 polarization and improved wound healing [63]. The recruitment of Treg cells is in line with the
temporal switch from M1 to M2 macrophages [13].

Cytotoxic CD8+ T cells participate in the immune response post-MI; however, they are primarily
associated with clearing virally infected cells, can induce cardiomyocyte death in vitro [64] and have
an important role in myocarditis. In terms of cardiac ischemia, genetic deletion of CD8+ T cells
using CD8atm1makmice, decreased mortality after permanent coronary artery occlusion; however,
the all-cause mortality in CD8atm1mak mice was cardiac rupture [65]. Although survival was higher,
MI in CD8atm1mak mice resulted in defective efferocytosis, prolonged inflammation and poor scar
formation, demonstrating the complex role of these cells in myocardial repair.

The recruitment of T cells to the heart indicates autoreactive immunity and antigen presentation
of myocardial proteins by macrophages, dendritic cells or B cells to T cells. After MI, peptides released
from cardiac tissue, such α-myosin heavy chain [66,67], promote the differentiation of naïve CD4+ T
cells to assist in cardiac healing [67]. Of note, the autoreactive adaptive immune response after MI
and their participation in wound healing is different from the chronic response seen in myocarditis,
heart failure and aging. Sequencing of the T cell receptor (TCR) repertoire identified differences
between patients with acute myocardial infarction or normal coronary arteries and, therefore, may have
some prognostic value [68].

B cells are responsible for antibody production and, upon activation, are subdivided into plasma
and memory B cells. Plasma cells actively produce antibodies while memory cells survive for years in
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a quiescent state but can quickly mount an immune response upon secondary exposure to an antigen.
In the heart, B cells reside primarily in the cardiac vasculature and contribute to preservation of
myocyte contractility and size [69]. A cardioprotective role for B cells within pericardial adipose tissues
has also been described [70]. B cells may also have a maladaptive role in heart repair as they contribute
to the acute immune response after MI by activating monocytes in the bone marrow [59]. The effect of B
cell depletion therapy on patients with myocardial infarction using Rituximab, an antibody that targets
CD20 on mature B cells and is used to treat autoimmune diseases and certain cancers, is currently in
clinical trials (Rituximab in Patients with Acute ST-elevation Myocardial Infarction Study (RITA-MI)
(NCT03072199)).

The classification of lymphoid cells has become increasingly complex and relies on appropriate
cell surface markers. For example, a lymphoid cell which expresses markers of both T cells and
NK cells (termed invariant NK T cells or iNKT cells) is required for the reparative phase after
myocardial infarction [71]. A relatively new class of lymphoid cells, termed innate lymphoid cells
(ILCs) has similar paracrine expression profiles to T helper cells but lack antigen-specific receptors [72].
Unlike other lymphoid cells, ILCs reside in tissues and undergo local activation and proliferation [73].
Elevated circulating levels of type 1 ILCs, which produce high levels of IFN-γ, were detected in
patients experiencing an acute MI (within 12 h of symptom onset) [74]. Patient follow-up indicated
that type 1 ILC abundance correlated with poor clinical outcomes. Type 2 ILCs are activated by
cytokines such as IL-33 and produce IL-5 and IL-13 and have a diverse role in cardiovascular disease
including: a pathogenic role in pericarditis via eosinophil activation, a beneficial role in atherosclerosis,
and are implicated in cardiac remodeling post-MI [75–77]. Type 2 ILCs are a part of type 2 immunity
which includes Th2 cells, M2 macrophages, eosinophils and mast cells. As a whole, the role of type
2 immunity on cardiac repair post-MI is unclear [78]. As the tools used to identify cell populations
improve, our understanding of the role of lymphoid cells in cardiac disease is sure to grow and will
undoubtedly lead to more questions.

3. Dysregulation of the Immune System during Aging

As the immune system has a fundamental role in heart repair post-MI, targeting the immune
system is a practical approach to improving heart function after injury. A caveat to this approach,
however, is the underlying influence of aging on cardiovascular and immune system function which
could inadvertently impact the efficacy of therapies in differently aged populations. One hallmark
symptom of aging is systemic, chronic inflammation, termed inflammaging [79] which becomes
apparent in both the heart and bone marrow in the elderly. This type of inflammation is distinct
from the acute inflammatory response seen after MI as it is a low-grade immune reaction and
there is no pathogen or injured tissue. Franceschi and Campisi summarized several factors which
contribute to inflammaging including: damaged macromolecules, microbial molecules (e.g., from the
gut microbiota), mitochondrial dysfunction, cellular senescence, alterations of the coagulation system,
immunosenescence and the complement pathway [80]. While aging impacts all cells, the rate of
degeneration is cell- and tissue-specific [81,82]. The predominant cell population associated with
inflammaging is hyperactivation of cells of the innate immune response, and a weakened adaptive
immune system, with fewer naïve T cells and a smaller repertoire of T cell receptors [83]. IL-6, IL-1,
TNF-α and IFN-γ are cytokines associated with cellular aging across tissues including the heart [84].
In fact, in an elderly cohort of over 2000 patients aged 70–79 years old, IL-6, C reactive protein (CRP),
and TNF-α could be used as predictive markers of future cardiovascular events [85].

Why does the non-infarcted, aged heart develop chronic inflammation? Part of this etiology
is due to cell fate decisions that arise within the bone marrow, when HSCs committed to the
myeloid lineage preferentially expand over those committed to the lymphoid lineage [86]. From the
lymphoid-myeloid perspective, this bias reduces overall lymphoid cell populations and amplifies
myeloid cell populations which have become dysfunctional and promote cardiac inflammation [87–89].
Additionally, the lymphatic system, which has an important role in the response to myocardial
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infarction, deteriorates with age [90]. Many immunological disorders such as clonal hematopoiesis,
myeloid skewing, and trained immunity are age-related phenomena which could amplify adverse
cardiovascular events. While the intersection between cardiovascular health and immune cell activity
is being re-examined, the underlying age-associated cellular changes have not been thoroughly studied.
Below, we detail some mechanisms of aging that are putative targets for rejuvenation therapies
(Figure 2).
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Figure 2. Mechanisms and consequences of immune cell aging. Cell intrinsic (autonomous) mechanisms
of immune cell aging include mutations, epigenetic anomalies and metabolic reprogramming.
Cell extrinsic factors that influence immune cell aging include deterioration of the bone marrow
niche and co-morbidities, such as coronary artery disease or diabetes. With time, HSCs encounter
various autonomous and non-autonomous drivers of aging that have downstream consequences on
cell phenotype and systemic tissue function. Aged HSCs undergo enhanced myelopoiesis (myeloid
skewing), mobilization to the circulation and self-renewal and show deficiencies in lymphopoiesis,
BM homing and their ability to respond appropriately to tissue damage.

3.1. Mutations and Epigenetic Anomalies

Age-related myelopoiesis, lymphopenia and anemia are driven in part by intrinsic (autonomous)
cellular degeneration. Hallmarks of intrinsic drivers of HSC aging include increased LT-HSC
proliferation, increased granulocyte-macrophage progenitor cells and fewer common lymphoid
progenitor cells [91]. Autonomous cellular changes that drive these cell fate decisions include
fundamental regulators of aging such as DNA damage [92,93], DNA methylation [94], telomerase
dysfunction [95] and epigenetic anomalies [96]. These cellular changes underpin autonomous (intrinsic)
HSC aging and can contribute to downstream consequences such as clonal hematopoiesis (which is
dominant expansion of a mutated HSC or progenitor cell), lymphopenia, anemia, platelet hyperactivity
and myeloid skewing.

Clonal hematopoiesis is an age-associated phenomenon which predisposes individuals to
hematological cancer and cardiovascular disease [97,98]. To date, experimental manipulation of
genes that promote clonal hematopoiesis have identified changes in monocytosis and macrophage
accumulation [99]. Mutations in the proto-oncogene, Tet Methylcytosine Dioxygenase 2 (Tet2),
an epigenetic regulator of DNA methylation leads to increased activity of myeloid cells, including
polarization towards pro-inflammatory macrophages [99]. In addition to Tet2, mutations in DNA
(cytosine-5)-methyltransferase 3A (DNMT3A), Additional Sex Combs-Like 1 (ASXL1) and Janus kinase
2 (JAK2) induce clonal hematopoiesis and cardiovascular disease [98]. Tet2, DNMT3A and ASXL1 are
epigenetic regulators of gene expression underscoring the importance of epigenetic state in immune



Cells 2020, 9, 1894 9 of 32

cell fate decisions. Bone marrow transplant from Tet2-deficient donor HSCs or myeloid progenitors
increased IL-1β expression and exacerbated cardiac damage after permanent occlusion, highlighting
the connection between clonal hematopoiesis and heart function [100].

At the top of the hematopoietic hierarchy are long-term reconstituting HSCs (LT-HSCs), thought to
give rise to all blood cell lineages. LT-HSCs are predisposed to certain lineages, referred to as
lymphoid-biased, myeloid-biased or megakaryocyte/platelet-biased HSCs. As HSCs age, their gene
expression profile shifts to myeloid- and platelet-biased HSCs, and fewer lymphoid-biased genes are
expressed [89,91]. The multipotent progenitor (MPP) cell is the point at which a common myeloid (CMP)
or lymphoid progenitor (CLP) cell is formed. In adult mice, this number is already imbalanced with 1
MPP forming approximately 4 CMPs, but only 1 CLP is formed per 46 MPP [101]. Aging progressively
reduces the CLP population, CLP proliferation and B cell development [91,102].

Microarray analysis of HSCs transcripts from 2-, 6-, 12-, and 21-month old mice identified broad
upregulation in transcriptional programs associated with inflammation and epigenetic modifications,
indicating altered functionality [96]. Genome-wide profiling of the histone modification, H3K4me3,
and DNA methylation in 4- and 24-month old mouse HSCs demonstrated that the epigenetic state
drives HSC cell fate decisions that favor self-renewal over differentiation [103]. Single cell approaches
that incorporate genomics, transcriptomics and epigenomics have helped to elucidate the complex cell
fate decisions that change with HSC aging. Single cell RNA-seq (scRNA-seq) profiling identified that
old LT-HSCs spend less time in G1, indicating these cells progress faster through the cell cycle [104],
in agreement with the established observation that HSC self-renewal increases with age. Lineage tracing
of HSCs in combination with scRNA-seq shows that HSCs have a finite amount of myeloid, lymphoid
or erythroid cell progenitors [105]. Interestingly, the authors also revealed that megakaryocytes develop
from the most primitive HSCs, at the top of the hematopoietic hierarchy and not a more restricted
progenitor. As megakaryocyte/platelet-biased HSCs increase with age [89], understanding this cell
population is particularly important in age-associated disease.

In addition to cell fate decisions, aging also affects the mobilization and engraftment of HSCs and
progenitor cells [106]. Although the migration of HSCs in response to CXCL12 is unchanged in 2- and
24-month old murine HSCs, Xing et al. demonstrated that it is the adhesion between stromal niche cells
and HSCs that deteriorates [107]. In vivo, using a competitive reconstitution assay, an equal mixture of
young and old HSCs demonstrated that aged HSCs have a reduced capacity to repopulate the bone
marrow. Additionally, aged HSCs are not well retained in the bone marrow and are more susceptible
to G-CSF mobilization. Part of this is explained by the age-related upregulation of Rho-GTPase Cdc42
activity, which has a role in proliferation, cell adhesion, microfilament organization and cell polarity.
Genetic deletion of the Cdc42 inhibitor, Cdc42GAP, upregulated Cdc42 activity and, subsequently,
reduced HSC adhesion to fibronectin [108]. Cdc42 activity is upregulated with aging and senescence
in a number of tissues. Using the genetic knockout mouse of Cdc42GAP to upregulate Cdc42 activity
resulted in premature aging of fat, bone, skin and muscle [109]. Cdc42 itself is polarized toward one
end of LT-HSCs in young cells, but becomes apolar with age [110]. Interestingly, this localized Cdc42
activity is associated with polarity of nuclear histone 4 lysine 16 acetylation, in a term referred to as
epipolarity. Inhibiting Cdc42 activity via pharmacological antagonists also shifts HSC polarity and
rejuvenates histone 4 lysine 16 acetylation [110].

Further analysis showed that upstream regulation of Cdc42 activity is via Wnt5a signaling [111].
Both gain and loss of function approaches were used to demonstrate the potent role of Wnt5a in HSC
aging. When young HSCs from 3-month-old mice are exposed to Wnt5a, classical molecular and
functional symptoms of HSC aging develop including enhanced Cdc42 activity, myeloid skewing
and reduced engraftment potential. In contrast, loss of Wnt5a in old HSCs, from 20–24-month-old
mice, reversed these age-associated effects. Loss of Wnt5a function was assessed using both genetic
deletion (haploinsufficiency) and short hairpin RNA (shRNA) mediated knockdown in LT-HSCs,
which demonstrates Wnt5a promotes HSC aging in a cell autonomous fashion. Regulation of the
HSC epigenome is complex. A comprehensive understanding of how epigenetic aging of HSCs and
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immune progenitor cell affects the immune system will be important in creating therapies to improve
tissue repair.

3.2. Deterioration of the Bone Marrow Niche

Cell extrinsic, nonautonomous factors which contribute to HSC aging include remodeling of the
bone marrow niche [112], including adrenergic drive, cellular composition, oxygen concentration,
cytokine production and pre-exposure to tissue injury [113]. Niche cells include macrophages,
osteoblasts, endothelial cells, megakaryocytes and mesenchymal stem cells (MSCs). Niche factors that
regulate HSC activity include: CXCL12, Angiopoietin 1 (ANGPT-1), kit ligand (KITL aka Stem Cell
Factor (SCF)), Thrombopoietin (TPO), TGF-β1 and Vascular cell adhesion protein 1 (VCAM-1) [114–116].
These cells and factors are also influenced by aging which can ultimately regulate HSC quiescence,
proliferation and differentiation.

The signaling between bone marrow MSCs and HSCs have been one of the better characterized
interactions. CXCL12, a retention factor that promotes HSC quiescence is produced by MSCs and
megakaryocytes and acts on the CXCR4 receptor present on HSCs [114,117]. The systemic role of
innervation on MSC-HSC communication has been particularly interesting. Using a Cgt knockout
mouse to reduce neural input, Katayama et al. demonstrated that input from the sympathetic nervous
system controls HSC quiescence by modulating the activity of MSCs and CXCL12 production [118].
Downregulation of neural input reduced HSC mobilization and lymphopoiesis. Further investigation
of this pathway has shown that the signaling factor of the sympathetic nervous system, noradrenaline
acts specifically on the β3-adrenergic receptor, expressed only on MSCs and not other niche cells and
that CXCL12 production is regulated by circadian rhythms [119]. Megakaryocytes also contribute to
HSC quiescence via CXCL4, CXCL12, TPO and TGF-β1 [115–117]. Regulating HSC bias by controlling
the bone marrow niche cell activity has been linked to cardiovascular disease as, after MI, myelopoiesis
is pushed into overdrive by noradrenaline signaling [16].

An additional consideration to HSC behavior is that the bone marrow is not homogenous.
Spatial regions of the bone marrow are subdivided into the endosteal and vascular niches (including
arterioles or sinusoids) which are near or far from the bone, respectively. The vascular BM niche is
enriched in endothelial cells and Neural/glial antigen 2 (NG2+) periarteriolar pericytes and promotes
HSC bias to the myeloid lineage while the endosteal niche promotes bias toward the lymphoid
lineage [120–122]. The endosteal region was thought to be more hypoxic than the sinusoidal niche,
however, using two-photon phosphorescence lifetime microscopy this was shown not to be the
case [123]. With aging, the endosteal HSC niche shrinks and the perivascular, myeloid-biased HSC
niche expands [112]. This is in part derived from adrenergic drive, as loss of the β3-adrenergic receptor
in Adrb3−/− mice lead to expansion of myeloid-biased HSCs in the endosteal niche [112].

The interaction between HSCs and megakaryocytes in the BM niche also has a role in age-related
HSC dysfunction which is regulated by noradrenergic signaling and macrophage inflammation.
Megakaryocytes are normally found throughout the BM in both the perivascular and endosteal
niches and promote HSC quiescence. With aging, the megakaryocyte-biased HSCs population
increases [124]. Ho et al. demonstrated that expansion of the megakaryocytes in the BM niche
was, in part, caused by age-related increase in noradrenergic signaling via the β2-adrenergic receptor
(Ardb2), which upregulated expression of IL-6 in stromal niche cells [112]. The discrepancy between the
concomitant increase in megakaryocytes [124,125] (which typically promote HSC quiescence) and HSCs
with aging may be reconciled by changes in their physical interaction. The physical proximity between
HSCs of the endosteal niche and megakaryocytes decreases with age, facilitating HSC activation [112].
This is regulated by an age-associated loss in β3-adrenergic receptor signaling, which could be corrected
in progeroid mice using β3-adrenergic receptor agonist [112]. Thus, the interaction between aging,
innervation and the BM niche cells on HSC function may be complex, but also offers the opportunity
for therapeutic intervention.
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3.3. Metabolic Adaptations

HSC and immune cell aging have been shown to be particularly sensitive to metabolic activity.
Several metabolic therapies, such as caloric restriction, IGF-1 depletion, reactivation of autophagy or
rapamycin treatment, have been shown to reduce myeloid bias, restore self-renewal and in some cases,
increase lifespan [126–128].

Autophagy has a complex role in old LT-HSC subpopulations. In 24–28 month old mice,
approximately one-third of LT-HSCs maintain autophagy via transcription factor, Forkhead Box O3A
(Foxo3a) [128,129]. These cells are tolerant to metabolic stress and have shown long term engraftment
potential [128,129]. The majority of old LT-HSCs have defects in autophagy. This is important as
autophagy suppresses HSC metabolism which ensures HSC quiescence but also has downstream
consequences on myeloid skewing [128]. Deletion of Autophagy Related 12 (Atg12) from young HSCs
resulted in a premature aging phenotype and myeloid bias [128].

Modulation of the mitochondrial content is regulated by mitophagy (autophagy of mitochondria).
Vannini et al. demonstrated that mitochondrial content could regulate HSC fate decisions [130].
Within the hypoxic environment of the bone marrow niche reside LT-HSCs which take on a unique
metabolic profile that rely on anerobic glycolysis for energy, perfectly suited to their environment.
More mature progenitor cells use oxidative phosphorylation [131]. Inhibition of mitochondrial activity
prevented differentiation of HSC progenitor cells and instead converted them to a self-renewing
state [130]. Using Nicotinamide adenine dinucleotide (NAD+)-boosting agent nicotinamide riboside
(NR), Vannini et al. were able to improve HSC function and suggested this could be adapted to
hematological and oncological diseases [132].

More mature or differentiated immune cells also undergo metabolic changes that control their
behavior. M1 and M2 macrophages rely on glycolysis or oxidative phosphorylation during the
early and late phases of repair post-MI, respectively [133]. The age-related changes in macrophage
metabolism on pro-inflammatory phenotype is suspected, but more investigation is required [134].
The metabolic activity of T cells has been shown to have a leading role in systemic tissue inflammaging.
Bharath et al. determined that the inflammaging of CD4+ T cells takes on a Th17-biased profile, with
defects in autophagy and mitochondrial activity [135]. Using metformin, a drug used to treat type 2
diabetes, they were able to rejuvenate the metabolic profile of old T cells (collected from individuals
approximately 60 years old) and subsequently reduce inflammation, as determined by reduced STAT3
activity and IL-17 levels. In young CD4+ T cells (collected from individuals approximately 30 years
old), disrupting autophagy via siRNA targeting of autophagy-related protein 3 (Atg3) led to premature
development of the Th17 phenotype.

3.4. Co-Morbidities and Sex

Recent studies have explored how environmental factors including diet, stress and previous
cardiovascular events lead to epigenetic modifications and the downstream consequences on immune
cell activity or differentiation [136]. When HSCs or progenitor cells are exposed to a certain stimulus,
they undergo epigenetic and metabolic reprogramming and may retain those epigenetic marks and
metabolic activities in a phenomenon referred to as trained immunity. An important feature of
trained immunity is that it is unique to cells that participate in the innate immune response [137].
Upon secondary exposure, these innate immune cells are already primed to respond as they have formed
epigenetic and metabolic memory from the previous encounter. This typically induces a secondary
response that is stronger than the first [138]. In contrast to trained immunity is immune tolerance,
in which after a second treatment (e.g., Lipopolysaccharides (LPS) treatment) the immune response
is essentially paused and non-responsive to the second stimulus [139]. Ifrim et al. characterized the
ligands which promote immune training or tolerance [140]. Cultured human monocytes treated with
β-glucan or LPS to prime cells toward a trained or tolerant phenotype, respectively, induced stable
epigenetic reprogramming that controlled macrophage phenotype upon monocyte differentiation [141].
Cremer et al. put the hypothesis of trained vs tolerant immunity to the test in the context of recurring
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ischemic heart disease [142]. To perform a recurrent MI in mice, they sequentially ligated the LCX and
LAD arteries. After the second MI, the inflammatory response was muted in part because of bone
marrow macrophages which retained memory of the previous injury [142]. The authors surmised
that part of the failure of the second immune response is because of changes in signals coming from
the heart and acting on the bone marrow niche. While this study did not directly link these effects to
aging it is logical to infer that during aging, the risk of exposure to cardiovascular events increases.
The accumulation of these events in aged cells could exacerbate negative cardiac effects.

Type 2 diabetes is a significant risk factor for cardiovascular disease that is associated with chronic
inflammation (specifically myelopoiesis) and aging [143–147]. Part of this etiology is due to HSC
fate decisions and bone marrow niche remodeling. In human type 2 diabetic bone marrow samples,
the primitive CD34+ HSC population is decreased and shows higher rates of apoptosis compared
to non-diabetics; however, more mature HSC populations were unaffected, indicating a potential
reduction in self-renewal of the former. Mechanistically, this was attributed to reduced mir-155
expression and precocious FOXO3a activity in HSCs, which could by downregulated by exogenous
expression of mir-155 [148]. Adipose tissue transplant from obese to lean mice showed that bone
marrow myelopoiesis in obesity is driven by IL-1β produced by adipose tissue macrophages [145].
In contrast, HSCs in type 1 and 2 mouse models of diabetes are unable to mobilize HSCs in response to
G-CSF as CXCL12 expression is abnormally maintained in MSC niche cells [149]. Albiero et al. showed
that decreased HSC mobilization (mobilopathy) and myelopoiesis in diabetes are linked via p66Shc,
which has dual roles as an adaptor for membrane proteins and also translocates to the mitochondria
after phosphorylation where it contributes to oxidative stress [146]. By selectively deleting p66Shc
from hematopoietic or nonhematopoietic cells (via bone marrow transplant of WT or p66Shc−/− cells to
p66Sch−/− or WT mice, respectively) in diabetic mice they demonstrated that loss of p66Shc prevents
myelopoiesis and mobilopathy. Mechanistically, the authors conclude p66Shc contributes to HSC
maintenance by stimulating MSC production of CXCL12. It is unclear how p66Shc induces myelopoiesis
though they observed that expansion of the megakaryocytic bone marrow niche cell population, which
promotes myeloid-biased HSC development, was prevented in p66Shc knockout mice. Bone marrow
niche endothelial cells reside in close proximity to HSCs in diabetic mice, modulating their function
and myelopoiesis [147]. Interestingly, epidermal growth factor (EGF) signaling in endothelial cells
modulates the typical immune cell response observed in diabetic mouse models, as endothelial-specific
deletion of the EGF receptor (EGFR) prevented this effect. In this study, Cxcl12 expression was reduced
in endothelial cells; however, no change in Cxcl12 expression was observed in MSCs. The two studies
discussed here were observed under streptozotocin or diet-induced models of diabetes which could
explain the conflicting reports of MSC activity and Cxcl12 expression. Clearly, further investigation
into the mechanism of bone marrow niche-mediated myelopoiesis or mobilopathy is required. A third
type of bone marrow niche cell that has been linked to diabetes-induced inflammation are lymphoid
cells which are more abundant in the bone marrow of type 2 diabetics. Abatacept, which inhibits T cell
activation and shows clinical value in some type 1 diabetics [150] was able to reduce inflammation and
improved cardiovascular function in a genetic model of diabetes [151]. Thus, in obesity and type 2
diabetes, the systemic environment is enriched in myeloid cells but unable to mobilize beneficial HSCs
in response to stimuli, and the niche plays a vital role in these events [149].

Finally, sex has an important role on cardiac aging [152] and HSC behavior [153] wherein
young pre-menopausal women are at a lower risk for cardiovascular events than age-matched male
counterparts [154]. One factor at play in this context is estrogen which promotes HSC proliferation [155]
and also regulates a number of terminally differentiated immune cells to reduce inflammation [156].
Interestingly, telomere length in leukocytes is preserved in women, regardless of menopause status,
compared to men [157]. In the context of biological aging as assessed by a frailty index in aged rodents
where middle aged and aged is defined as 12- and 30-months old, respectively [158], sex impacts
cytokine levels in the blood such that IL-6, IL-9 and IFN-γ levels correlate with frailty in female mice,
while IL-12 correlates with family in males [159]. These sex-related intersections are also found in other
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chronic inflammatory conditions including obesity. When placed on a high-fat diet, male mice are
more prone to myelopoiesis in vivo and hematopoietic and progenitor cells are primed to response to
LPS treatment in vivo [160]. In sum, the healthspan and genetic background varies on an individual
basis and may influence HSC biological aging to impact future cardiovascular events.

4. Consequences of HSC Aging on Heart Repair and Prospective Therapies

Our understanding of immune cell function on cardiovascular events continues to advance. In 2004,
it was reported that elevated leukocyte numbers may be used in risk factor assessment of coronary heart
disease [161] but more recently, a detailed panel of 34 myeloid and lymphoid subpopulations from
peripheral blood showed leukocyte quantity had no predictive value of future MI and correlate better
with atherosclerosis [162]. A meta-analysis of 24 studies with 43,725 individuals, showed that shorter
leukocyte telomere length, a bio-marker for aging, was associated with coronary heart disease [163].
As aging of HSCs and immune cells has a profound effect on their function, assessing these deficiencies
in the context of the cardiovascular system is a logical next step and yet there are few studies that
directly tie aging of the immune system to heart function and repair processes (Table 1). Logistically,
targeting the immune response in the aged heart could be approached from different vantage points.
That is, with aging, the heart develops an inflammaging profile, with enhanced leukocyte infiltration
and cytokine production that contributes to local damage, yet aging is associated with a dampened
but prolonged immune response after cardiac ischemia [164–166]. In other words, the aged heart has
deficiencies in both cardiac homeostasis (e.g., chronic inflammation) and repair responses (e.g., ischemic
injury). As the immune system has a pivotal role in cardiac function, controlling their behavior could
lead to beneficial cardioprotective therapies.

Table 1. A brief summary of the effect of aging on cardiac immune cell infiltrate or repair processes.

Method Injury Outcome Reference

8 wk., 18- and 30-mo. (WT) N/A Cardiac macrophages and
neutrophils increase with age [167]

2–3 vs. 12–15 mo. (WT) N/A Higher T cell activity in the heart
draining lymph nodes [168]

Cardiac macrophages from 4-, 8-,
or 30-wk. (WT) N/A

Functional and transcriptional
profiling indicate a senescent,

fibrotic phenotype forms
[169]

Heterochronic parabiosis N/A Reduced age-related
cardiac hypertrophy [170]

2–3 and >24 mo. (WT) I/R Impaired inflammation and healing;
decreased cardiac function [166]

Senolytic (ABT-263)
administration; 23 mo. (WT) P Improved survival and

cardiac function [171]

Heterochronic BMT
(2–3 vs. 20–22 mo.) P

Enhanced angiogenesis, scar
thickness and overall

cardiac function
[172–174]

Competitive BMT using
Tet2−/− cells P

Upregulated IL-1β expression;
Increased fibrosis; Decreased

heart function
[100]

MMP9 KO mice; 11–36 mo. P
Enhanced M2 macrophage activity;

improved survival; reduced left
ventricular dilatation.

[175]

N/A = Not Applicable (no injury was performed); P = permanent coronary artery occlusion;
I/R = ischemia/reperfusion; BMT = Bone Marrow Transplant; KO = Knockout; WT = Wild type;
Mo. = month; Wk = week.

4.1. Anti-Inflammatories

Early immunomodulatory cardiovascular therapeutics, such as steroids and NSAIDs, were used
with the aim of limiting inflammation post-MI but instead increased infarct size during the early
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phase of repair, promoted scar thinning and caused an overall delay in healing [176–178]. In recent
years, it is the understanding of the different aspects of the immune response and specific targeting
of subpopulations to control repair, not necessarily targeting the overall immune response, that has
garnered the most interest, and several prospective therapies have used this strategy in clinical trials.

In the context of aging, there are two sources of inflammation: from the source of injury (e.g., MI)
and systemic inflammation (either caused by other co-morbidities or due to senescence). For example,
cytokines IL-6 and TNF-α are upregulated in the heart post-MI, but also systemically with age [85,164].
Therefore, anti-inflammatory therapeutics must take both sources into account when considering the
dose and duration of medication. Several clinical trials have established that neutralizing antibodies and
small molecule inhibitors that target pro-inflammatory proteins are plausible avenues in limiting further
tissue damage after MI. Examples of pilot and clinical trials include TNF-α antagonist (Etanercept) [179],
IL-6 receptor antagonist (Tocilizumab) [180,181], IL-1 receptor antagonist (Anakinra), p38 MAPK
inhibitor (Losmapimod) [182], methotrexate [183] and Lipoprotein-associated phospholipase A2
(Lp-PLA2) inhibitor (Darapladib) [184] all of which showed mild to moderate outcomes without
significant clinical benefit.

The Canakinumab Antiinflammatory Thrombosis Outcome Study (CANTOS) repurposed the
anti-arthritic drug Canakinumab, a neutralizing antibody of IL-1β, in stable patients with previous
MI [185]. Canakinumab initially showed promise as the trial reported a reduction in subsequent
cardiovascular events by 15% [185]. While this was a landmark result, there were some shortcomings.
The clinical drawback to Canakinumab is an increased rate of fatal and nonfatal infection. Accompanied
by the price of monthly administration of Canakinumab ($16,000 per injection), widespread buy-in
waned [186]. In 2019, colchicine, a non-specific, affordable drug with anti-inflammatory properties
and an established safety profile, was shown to have similar beneficial effects on cardiovascular
end points (e.g., subsequent MI) as Canakinumab [187]. Importantly, while both patient cohorts
had a previous MI, the Colchicine Cardiovascular Outcomes Trial (COLCOT) enrolled patients who
had a previous MI within 30 days, while CANTOS enrolled stable patients. The repurposing of
anti-inflammatories to cardiovascular disease remains an area of ongoing research with the potential to
move quickly to the clinic if long-term safety can be achieved. It will also be important to understand
the potency of these drugs in differently aged populations and how chronic inflammaging impacts their
efficacy. Unfortunately, none of the agents under discussion specifically reduce cardiac inflammation
or enhance cardiac regeneration. More directed therapies may improve clinical outcomes. In addition
to the secretion of cytokines and chemokines, immune cells also secrete extracellular vesicles (EVs)
which can, in turn, influence cardiac viability post-MI [188]. For example, EVs isolated from M1
activated macrophages induced neonatal rat cardiomyocyte death in-vitro in an NF-κB-dependent
manner, suggesting that the adverse effects of M1 cells on cardiac viability may in-part be mediated
through EVs [189]. As aging influences EV cargo, including microRNA that regulates inflammatory
pathways [190], their use as biomarkers, targets or treatments in cardiovascular aging may offer more
robust opportunities to improve health.

4.2. Regulation of Immune Cell Quantity and Diversity by Directing Cell Fate Decisions

In the context of aging, it is also important to consider whether the intensity and/or duration of the
cellular infiltrate post-MI can be controlled to mount a more appropriate response. Aging affects both
the macrophage population and function: cardiac resident CCR2− macrophages, which support heart
function via angiogenesis and perhaps cardiomyocyte proliferation (in the adult) [43], are replaced
by CCR2+ macrophages, from blood-derived monocytes [17,52,191]; resident cardiac macrophages
become biased toward a fibrotic, senescent phenotype [169]; and M1 macrophages increase while M2
macrophages decrease [192]. Persistent myelopoiesis has significant clinical impact as it is associated
with ischemic heart disease and stroke [16], chronic stress [193] and aging [194]. Therefore, controlling
cell recruitment, activity and immune cell fate decisions are of great interest.
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Based on the M1/M2 macrophage dichotomy there have been numerous attempts to alter the
timing and/or duration of monocyte or macrophage activity to preserve cardiac function. For example,
genetic deletion of MMP9 reverses the age-related shift in the M1/M2 ratio in the heart [192]. Myocardial
infarction in MMP9 knockout mice form 11 to 36 months of age showed improved survival and reduced
left ventricular dilatation due to upregulation of M2 macrophage activity [175]. More precise targeting
of macrophage polarization is also possible. Nanoparticle delivery of siRNA targeting the transcription
factor, IRF5, which regulates macrophages polarization during the inflammatory phase of cardiac
repair after MI, shifted the macrophages profile away from M1 and improved infarct healing [195].
Nanoparticle delivery of pharmacological agents has also been administered post-MI. Delivery of a
chemical inhibitor of Toll-like receptor 4 (TLR4) in an I/R model of MI decreased inflammation and
infarct size and improved overall heart function [196].

Given the ongoing activity of HSCs and their progeny, targeting aged immune cell function at
the epigenetic level is an intriguing possibility. Transcriptional analysis of circulating leukocytes
showed that patients with MI had reduced expression of the long noncoding RNA (lncRNA),
nuclear enriched abundant transcript 1 (NEAT1) [197]. Using a knockout model, NEAT1−/− mice
developed an exaggerated inflammatory response, though the mice were not challenged by coronary
occlusion. Targeting histone post-translational modifications to influence cell phenotype is also
possible. Using primary human LPS-stimulated macrophages, Kruidenier et al. demonstrated
that inhibition of H3K27 demethylases of the KDM6 subfamily could block inflammation [198].
Inhibition of the KDM6 subfamily preserved the repressive chromatin modification, H3K27me3,
on pro-inflammatory genes such as TNF-α. They extended their experiments to macrophages
from patients with rheumatoid arthritis and found that TNF-α was also reduced by this approach.
Chromatin modifying enzymes also play a pivotal role in M1 and M2 polarization. LPS-activated M1
macrophages express H3K4-specific methyltransferase mixed lineage leukemia (MLL) and H3K27
demethylase KDM6B while M2 macrophages express DNA methyltransferases (DNMTs) and histone
deacetylases (HDACs) which promote and repress gene expression, respectively [199].

Cell therapies used to treat cardiovascular disease include intramyocardial or intracoronary
delivery of myogenic cells (e.g., MSCs or cardiomyocytes derived from induced pluripotent stem
cells), bone marrow mononuclear cells and endothelial progenitor cells. Unfortunately, clinical trials
demonstrated that the efficacy of bone-marrow-derived cell therapy is low [200]. Importantly,
however, those that do engraft, function in a paracrine manner to stimulate endogenous cell
behavior. Recent evidence suggests that the benefits observed from cell therapy is primarily caused
by the indirect recruitment of CCR2+ and CCR2+CX3CR1+ macrophages to the ischemic heart [201].
Vagnozzi et al. (2020) demonstrated that the innate immune response is activated by delivery of bone
marrow mononuclear cells or cellular debris from dead bone marrow mononuclear cells results in
similar functional improvements after I/R [201]. The use of zymosan, a chemical inducer of the innate
immune response also improved heart repair. To prove that delivery of stem cells activates the immune
response to improve heart function, the use of cyclosporine A, an immunosuppressive or chlodronate
(macrophage depletion) was applied and the beneficial effects were lost. Functional improvements
were due to reduced fibrosis. They concluded that activation of the immune response is the mechanism
behind the functional benefits observed with cell therapy.

Notably, while aging reduces global lymphoid populations, sub-populations of lymphoid cells
differentially expand and in the murine heart, CD4+ T cells increase with age [168]. In humans, changes
in telomere length and the epigenetic landscape of CD8+ T cells has been associated with aging and
coronary heart disease [202–204]. Using a 5 and 12 year follow-up, Lin et al. monitored telomere length
and telomerase activity in subjects aged 20–90 years old and found that the lymphocyte population
is particularly sensitive to telomere attrition [202]. Interesting, CD8+ T cell telomere shortening was
also identified as a risk factor for coronary artery disease, independent of aging [203]. To assess how
chromatin accessibility changes with immune cell aging, the assay for transposase-accessible chromatin
with sequencing (ATAC-seq) was performed in combination with RNA-seq on whole peripheral blood
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mononuclear cells and individual immune cell populations from young (22–40 year) or old (>65 years
old) subjects [204]. In increasing order, monocytes and naïve B cells showed no change, CD4+ T
cells showed minimal change and CD8+ T cells showed dramatic changes in chromatin landscape
with age. What consequences these observations have on improving cardiovascular health are yet to
be investigated.

4.3. Bone Marrow Transplant and Niche Remodeling

The foundation for bone marrow transplant was established in the 1950s and is primarily used to
treat bone marrow oncological diseases. Based on the systemic influence of bone marrow HSCs on
tissue function, in theory, replacing old bone marrow progenitor cells with young cells could restore
tissue function. This procedure typically involves radiation and allogeneic bone marrow transplant
which is difficult in humans without malignancies. Partial bone marrow replacement with or without
low-dose radiation and induction therapy have been employed for benign disease [205–207]. However,
studies in mice show the benefits of bone marrow replacement in models of aging or chronic disease.
Heterochronic (young to old) bone marrow transplant in 20–22 month old mice improves angiogenesis
via upregulation of Cxcl12, Vegf and the inflammatory response post-MI [172,174,208]. Young bone
marrow cell transplantation can also improve cognitive function and muscle repair in aged mice,
implying a greater scope for bone marrow cell aging on systemic tissue aging [209–211]. Of note,
cognitive improvements in old mice with young bone marrow is caused by changes in both neurons
and microglia, the immune cell population in the brain [209,212]. Targeting circulating immunological
factors which correlate with age and negatively influence cognition, such as β-2-microglobulin or
Ccl11 [213,214] have been proposed to be putative targets that may limit age-associated disease.
Targeting bone-marrow-derived molecules via inhibitors such as neutralizing antibodies may be a
more feasible approach as it circumvents bone marrow transplant; however, it implies that targeting
one or a few molecules is sufficient to limit the negative effects of aging.

Based on these systemic findings, the effect of aged hematopoietic and immune progenitor cells on
cardiovascular health is a field ripe for investigation. It is the delivery method and subsequent stable
engraftment of these cells to the bone marrow that is the limiting factor in moving this type of cell therapy
from the lab to the clinic. To circumvent the toxic effect of radiation, other models of HSC replacement
therapy have been proposed including nonmyeloablative transplantation, anti-cKit and anti-CD47
antibody-mediated HSC depletion or mobilization based-transplant [215–217]. In nonmyeloablative
transplantation, the therapy relies on our understanding that the signals which retain HSCs to the
niche are defective with age [107]. In theory, this provides an opportunity for transplanted young
HSCs to home to the aged BM niche. In 2005, Kamminga et al. demonstrated that indeed young
HSCs could take up residence in the BM of an aged mouse [218]. While the strategy can extend rodent
lifespan, the efficacy is still low, potentially because of the age-related expansion of bone marrow
MSCs [124]. However, using this approach, Kovina et al. showed that transplantation of whole BM,
not just purified HSCs, resulted in 28% chimerism 6 months post-transplant [215]. They attributed this
high rate of chimerism to the age of the recipient (B10-GFP mice, 15 months old). Mobilization-based
therapies, such as combination G-CSF and AMD3100, increases the rate of HSC deployment and
temporarily empties the BM but preserves the niche. Using this method, heterochronic transplant of
young HSCs prolonged lifespan, even with a lower reconstitution rate than traditional myeloablative
therapies. Arguably, even with a low rate of reconstitution, incorporation of young LT-HSCs could
have significant beneficial outcomes. Mixed chimerism even at a low rate may be sufficient to permit
cardiac restoration in an aged individual after coronary occlusion. Bone marrow transplantation with
young cells in aged hosts has distinct advantages over cell transplantation because stable engraftment
and persistent effects can be demonstrated with bone marrow transplants [172,173]. In addition,
bone marrow transplantation leads to stable engraftment of young bone marrow cells in the heart.
This treatment has great promise if partial chimerism is sufficient to alter the response to cardiac injury.
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In addition to cell replacement therapy, it may be possible to rejuvenate resident HSCs or other
bone marrow resident cells using with pharmacological agents. This may be approached from several
avenues which have shown promise in pre-clinical anti-aging studies including targeting adrenergic
signaling, epigenetic reprogramming or redirecting metabolic activity [110,126,219,220]. For example,
macrophages are also present as resident cells in the bone marrow and with aging become are defective
in efferocytosis but are also hyperactivated, releasing high levels of IL-1β [124]. Increased IL-1β
induces megakaryocyte-bias in HSCs but this effect could be reduced ex vivo using anakinra, an IL-1R1
antagonist. As any downstream impacts of bone marrow therapeutics on cardiovascular function have
not been adequately investigated, this field could lead to some interesting developments in lifespan
and healthspan.

4.4. Senolytics

Senescence is a cellular state commonly characterized by cell cycle inhibition, increased cell
secretory activity, and changes in cell morphology [221]. With increasing age, there is an accumulation
of these dysfunctional cells within tissues and this accumulation is associated with organ dysfunction
in multiple organ systems. The deleterious effect of senescent cells is primarily attributed to
increased secretion of pro-inflammatory cytokines, chemokines, growth factors, extracellular vesicles,
and proteolytic enzymes by these cells which, in turn, disrupts tissue microenvironments and promotes
cellular dysfunction [190,221,222]. This unique secretory profile is termed the senescent-associated
secretory profile (SASP). Cellular senescence has been shown to have indirect and direct effects on
immune cell populations involved in infarct healing post-MI. For example, senescent cells promote
the expansion of immature myeloid cells which, in turn, further alter resident cell function; this effect
was shown to occur in an IL-6-dependent manner [223]. Immune cell subsets also acquire senescent
cell states in a process termed immuno-senescence. Both innate and adaptive immune cells have
been shown to exhibit some aspect of cellular senescence, such as increased expression of cell cycle
checkpoint inhibitors (e.g., p16; CDKN2A), increased pro-inflammatory cytokine secretion, and a
loss of cell function [224]. With aging, T-cells exhibit a decline in replicative potential and subsets
can acquire a pro-inflammatory phenotype [225]. Collectively, cellular senescence has both indirect
and direct effects on immune cells which together contribute to immune cell dysfunction in aged
individuals. Recently, new therapies targeting senescent cells have emerged as a new way to improve
immune cell function in aged individuals.

In a series of landmark studies, Van Deursen and colleagues demonstrated that systemic clearance
of p16+ cells in transgenic mice carrying an INK-ATTAC construct, which allows for selective elimination
of p16+ cells upon AP20187 administration, rejuvenated multiple organ systems of mice with an
accelerated aging phenotype, as well as naturally old mice [226,227]. These studies demonstrated
that tissue dysfunction which occurs with aging could be partially restored or rejuvenated following
removal of senescent cells. This subsequently promoted the creation of a new drug class termed
“Senolytics” which describes compounds that promote the removal or clearance of senescent cells
throughout the body. Using high throughput and bioinformatics approaches candidate compounds
have been identified which promote the death of or suppress the senescent phenotype of these cells.
For example, inhibitors of the Bcl-2 protein family such as ABT263 and ABT737 have been shown to
reduce p16+ cells in vivo by inhibiting the pro-survival pathways upregulated in senescent cells thereby
promoting cell death [228,229]. Another pharmacological approach which has shown promise is a
dasatinib and quercetin (D+Q) combination therapy [230]. D+Q treatment has been shown to improve
vascular function, exercise capacity, and increase the lifespan of female mice [230–232]. A number of
other compounds have also been identified with senolytic activity, as well as non-pharmacological
approaches [233–236].

Although the number of studies is limited, pre-clinical mouse studies have demonstrated that
senolytics can improve baseline cardiac cell function and cardiac repair in aged animals. In the uninjured
heart, both ABT263 [237] and D+Q [238] therapies were shown to increase cardiomyocyte proliferation
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and reduce fibrosis in old mice (>20 months old). Although the mechanisms responsible for these effects
remain unknown, removal of senescent cell paracrine factors in both studies was suggested to play a
role. Removal of senescent cells also improves cardiac repair; administration of ABT-263 to aged mice
improves survival and cardiac function post-MI compared to vehicle-treated mice [171]. Although the
underlying mechanisms were not investigated, another study found that ABT263 can reduce myeloid
skewing and rejuvenate bone marrow HSC function [228]. This suggests that the removal of senescent
cells can improve cardiac repair post-MI through rejuvenation of immune responses. Consistent
with this notion fisetin, a flavonoid similar to quercetin, reduces pro-inflammatory cytokine and p16
expression in peripheral CD3+ T-cells [236]. Interestingly, phase 1 clinical trials suggest that senolytic
therapies may be effective in humans. D+Q therapy reduced the expression of SASP factors in an open
label phase 1 clinical trial involving patients with diabetic kidney disease and improved markers of
physical function in patients with idiopathic pulmonary fibrosis [239,240].

One important concept that has yet to be investigated is the timing of senolytic treatment post-MI.
While initial studies have demonstrated that rejuvenation prior to MI improves repair in aged animals,
no post-MI treatment studies have been performed. Following infarction fibroblasts become senescent
in attempt to limit fibrotic responses [241]. Thus, removal of senescent cells may have different effects
on repair processes activated and more studies are needed to determine what effect post-MI treatment
can have on repair. Although much remains unknown about how different cell populations are
affected, the safety profile, and duration of benefits of senolytic therapy, these studies support further
investigation into the use of senolytics for rejuvenating inflammatory responses to improve cardiac
repair in aged individuals.

5. Conclusions and Perspectives

The heart relies on the activity of bone-marrow-derived cells for homeostasis and repair. With aging,
systemic changes in the bone marrow and cardiac-resident immune cells can lead to maladaptive
cardiac remodeling. Rejuvenation of the aged immune system via diverse immunotherapies have
shown great promise in pre-clinical research but most have not been directly studied in the context of
cardiac function. As these therapies advance, the role of aging on tissues and immune cells should be
taken into consideration. Strategies that reverse immune cell aging in pre-clinical and early clinical
trials include bone marrow replacement, bone marrow niche remodeling, regulation of immune cell
diversity, anti-inflammatories and senolytics (Figure 3). As we understand how immune cell aging
affects cardiovascular health, the translation of these studies into the clinic may become possible.
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